Suppose is times differentiable on . Then, the nth Taylor polynomial of at is
Taylor polynomials are good approximations for functions.
Useful Taylor Polynomials
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:0}] Lemma 1. If , then is infinitely differentiable and
T_{n}(f(x);0)=\begin{cases} a_{0}+a_{1}x+\dots+a_{n}x^{n} \quad \text{if } n<m \\ a_{0}+a_{1}x+\dots+a_{m}x^{m} \quad \text{if } n\geq m
\end{cases}
We can prove the above using induction. ## Sin and CosT_{n}(\sin x;0)=\sum_{j=1}^{n} (-1)^{j+1}\frac{x^{2j+1}}{(2j+1)!}
We can once again prove the above using induction on the derivative of $\sin$.