Suppose is times differentiable on . Then, the nth Taylor polynomial of at is

Taylor polynomials are good approximations for functions.

Useful Taylor Polynomials

[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:0}] Lemma 1. If , then is infinitely differentiable and

T_{n}(f(x);0)=\begin{cases} a_{0}+a_{1}x+\dots+a_{n}x^{n} \quad \text{if } n<m \\ a_{0}+a_{1}x+\dots+a_{m}x^{m} \quad \text{if } n\geq m

\end{cases}

We can prove the above using induction. ## Sin and Cos

T_{n}(\sin x;0)=\sum_{j=1}^{n} (-1)^{j+1}\frac{x^{2j+1}}{(2j+1)!}

We can once again prove the above using induction on the derivative of $\sin$.