Recap §
To find area under curve (2D):
∫abf(x)dx
To find mass of thin wire (1D):
∫abρ(x)dx
To find volume under the surface f(x,y) (3D):
∬f(x,y) dA
Mass of a thin plate (2D):
∬ρ(x) dA
Area of the bounded region (2D):
∬1 dA
Measurement under f(x,y,z) (4D):
∭f(x,y,z) dV
Mass of 3D region:
∭ρ(x,y,z) dV
Volume of bounded region (3D):
∭1 dV
Volume bounded in 3D with functions §
∫x=ax=b∫y=g1(x)y=g2(x)∫z=f1(x,y)z=f2(x,y)f(x,y,z)dV
Example 1 §
Find ∭xydV where Q is a tetrahedron in the first octant bounded by 2x+3y+z=6.
z=6−2x−3y0≤z≤6−2x−3y0≤x≤30≤y≤−32x+2∫x=0x=3∫yy=−2/3x+2∫z=0z=6−2x−3yxydzdydx∫x=0x=3∫yy=−2/3x+2xy(6−2x−3y)dydx
Example 2 §
Set up triple integral to find the mass of the Q region: y=x3,y=x,z≤2x,z≥0 and the mass density given as ρ(x,y,z)=2z
∫01∫y=x3y=x∫z=0z=2x2zdzdydx
Example 3 §
Set up triple integral to find the volume of the region Q bounded by x−4−y,x+z=4,x=0,z=0
0≤z≤−x+4z=0⟹x=4,x=4−y2,x=0−2≤y≤20≤x≤4−y2∫y=−2y=2∫x=0x=4−y2∫z=0z=−x+4dzdxdy
Example 4 §
Find ∫03∫x=0x=9−y2∫z=0z=9−x2−y24xyex2dzdxdy
First change the order of integration
zx0≤x≤9−y2−z0≤z≤9−y20≤y≤3=0→z=9−x2−y2=0→x=9−y2−z2
∫y=0y=3∫z=0z=9−y2∫x=0x=9−y2−z4xyex2dxdzdy=∫y=0y=3∫z=0z=9−y2[2yex2]09−x2−zdzdy=∫y=0y=3∫z=0z=9−y2(2ye9−x2−z−2y)dzdy=∫03[−2ye9−x2−z−2yz]09−y2dx
Cartesian coordinate system is too hard? §
Use Triple Integral with Cylindrical and Spherical Coordinates!