• set of infinite decimal expansions
  • , where and for .
  • ‘fills in number line’

Field Axioms

On , there are 2 binary operations and such that

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Commutativity”,“label”:“commutativity”,“_index”:0}] Axiom 1 (Commutativity). , .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Associativity”,“label”:“associativity”,“_index”:1}] Axiom 2 (Associativity).

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Distributivity”,“label”:“distributivity”,“_index”:2}] Axiom 3 (Distributivity).

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Existence of ”,“label”:“existence-of-01”,“_index”:3}] Axiom 4 (Existence of ).

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Existence of Negatives”,“label”:“existence-of-negatives”,“_index”:4}] Axiom 5 (Existence of Negatives).

This is the definition of .

We may now define

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Comparator”,“label”:“comparator”,“_index”:5}] Definition 6 (Comparator).

In particular, iff .

[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Transitivity of Comparator”,“label”:“transitivity-of-comparator”,“_index”:6}] Lemma 7 (Transitivity of Comparator). If and , then . \begin{proof} and mean that and .

But, by ,

\end{proof}

[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:7}] Lemma 8. If and , then . \begin{proof} and implies by \ref that . \end{proof}

[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:8}] Lemma 9.

\begin{proof} If , then by previous lemma.

Assume . Then, because , we must have . However, that implies by axiom 8 that , a contradiction. \end{proof}

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“label”:“upper-bound”,“_index”:9,“title”:“Upper Bound”}] Definition 10 (Upper Bound). Suppose is a nonempty subset of and is such that for all . Then, we can say is an upperbound for . If , we call B the maximum of .

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Least Upper Bound”,“label”:“least-upper-bound”,“_index”:10}] Definition 11 (Least Upper Bound). is a least upper bound for a nonempty set if

  1. is an upper bound for .
  2. No number less than is an upper bound for

[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Unique upper bound”,“label”:“unique-upper-bound”,“_index”:11}] Theorem 12 (Unique upper bound). The least upper bound for a set is unique \begin{proof} If there are 2 least upper bounds, and , then and . \end{proof}

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Supremum and Infimum”,“label”:“supremum-and-infimum”,“_index”:12}] Definition 13 (Supremum and Infimum). If it exists, the least upper bound of a subset of set is called the supremum of , denoted . The greatest lower bound is the infimum, denoted .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Continuitiy Axiom”,“label”:“continuitiy-axiom”,“_index”:13}] Axiom 14 (Continuitiy Axiom). Every nonempty set of with an upper bound has a least upper bound or supremum.

[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:14}] Theorem 15. The natural number are unbounded above. \begin{proof}Suppose instead that is bounded above. Then, by continuity axiom, it has a supremum . So is not an upper bound, so there is some . But then has , contradicting that is an upper bound.\end{proof}

[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“label”:“archimedean-property”,“_index”:15,“title”:“Archimedean Property”}] Theorem 16 (Archimedean Property). If any , . \begin{proof}If not, then for all , so would be bounded above.\end{proof}

[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:””,“label”:“sqrt”,“_index”:16}] Theorem 17 (). 2 has a positive square root. \begin{proof}Let . Consider . We claim that , so we need to disprove that and . But first, we need to show that exists. To see that is non-empty, note that . To see that is bounded above, note . Thus, by Continuity Axiom, does exist.
Let . Case A: . Let . Then, . We can prove this by starting with . But also, . Therefore, is a smaller upper bound for , contradicting the definition of . Case B: . Choose , . Then, . That is , contradicting that . \end{proof}