- set of infinite decimal expansions
- , where and for .
- ‘fills in number line’
Field Axioms
On , there are 2 binary operations and such that
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Commutativity”,“label”:“commutativity”,“_index”:0}] Axiom 1 (Commutativity). , .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Associativity”,“label”:“associativity”,“_index”:1}] Axiom 2 (Associativity).
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Distributivity”,“label”:“distributivity”,“_index”:2}] Axiom 3 (Distributivity).
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Existence of ”,“label”:“existence-of-01”,“_index”:3}] Axiom 4 (Existence of ).
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Existence of Negatives”,“label”:“existence-of-negatives”,“_index”:4}] Axiom 5 (Existence of Negatives).
This is the definition of .
We may now define
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Comparator”,“label”:“comparator”,“_index”:5}] Definition 6 (Comparator).
In particular, iff .
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Transitivity of Comparator”,“label”:“transitivity-of-comparator”,“_index”:6}] Lemma 7 (Transitivity of Comparator). If and , then .
\begin{proof}and mean that and .But, by ,
\end{proof}
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:7}] Lemma 8. If and , then .
\begin{proof}and implies by \ref that .\end{proof}
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:8}] Lemma 9.
\begin{proof}If , then by previous lemma.Assume . Then, because , we must have . However, that implies by axiom 8 that , a contradiction.
\end{proof}
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“label”:“upper-bound”,“_index”:9,“title”:“Upper Bound”}] Definition 10 (Upper Bound). Suppose is a nonempty subset of and is such that for all . Then, we can say is an upperbound for . If , we call B the maximum of .
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Least Upper Bound”,“label”:“least-upper-bound”,“_index”:10}] Definition 11 (Least Upper Bound). is a least upper bound for a nonempty set if
- is an upper bound for .
- No number less than is an upper bound for
[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Unique upper bound”,“label”:“unique-upper-bound”,“_index”:11}] Theorem 12 (Unique upper bound). The least upper bound for a set is unique
\begin{proof}If there are 2 least upper bounds, and , then and .\end{proof}
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Supremum and Infimum”,“label”:“supremum-and-infimum”,“_index”:12}] Definition 13 (Supremum and Infimum). If it exists, the least upper bound of a subset of set is called the supremum of , denoted . The greatest lower bound is the infimum, denoted .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Continuitiy Axiom”,“label”:“continuitiy-axiom”,“_index”:13}] Axiom 14 (Continuitiy Axiom). Every nonempty set of with an upper bound has a least upper bound or supremum.
[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:14}] Theorem 15. The natural number are unbounded above.
\begin{proof}Suppose instead that is bounded above. Then, by continuity axiom, it has a supremum . So is not an upper bound, so there is some . But then has , contradicting that is an upper bound.\end{proof}
[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“label”:“archimedean-property”,“_index”:15,“title”:“Archimedean Property”}] Theorem 16 (Archimedean Property). If any , .
\begin{proof}If not, then for all , so would be bounded above.\end{proof}
[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:””,“label”:“sqrt”,“_index”:16}] Theorem 17 (). 2 has a positive square root.
\begin{proof}Let . Consider . We claim that , so we need to disprove that and . But first, we need to show that exists. To see that is non-empty, note that . To see that is bounded above, note . Thus, by Continuity Axiom, does exist.
Let . Case A: . Let . Then, . We can prove this by starting with . But also, . Therefore, is a smaller upper bound for , contradicting the definition of . Case B: . Choose , . Then, . That is , contradicting that .\end{proof}