[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Natural Logarithm”,“label”:“natural-logarithm”,“_index”:0}] Definition 1 (Natural Logarithm). For any , we define its natural logarithm by
Properties
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:1}] Proposition 2.
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:2}] Proposition 3. is differentiable on with derivative
\begin{proof}For any , the function is continuous on , so by the first fundamental theorem of calculus, is differentiable with derivative .\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:3}] Proposition 4. For all , .
\begin{proof} Fix and consider the function given by
for .
Since is the composition of the differentiable functions and , it is also differentiable. By chain rule,
Thus, and have the same derivative, so
Taking , we get
so that
\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:4}] Proposition 5. is strictly increasing on .
\begin{proof} Since for all , the function is strictly increasing.
\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:5}] Proposition 6. as and as .
\begin{proof} is strictly increasing and , so . Then,
as .
In the other direction, notice that , so
as .
\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:6}] Proposition 7. is integrable on any finite subinterval of and
\begin{proof} Since is continuous, it is integrable on any finite subinterval of . By integration by parts,
\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:7}] Proposition 8.
\begin{proof} Let . If , and , then
Using L’Hopital’s Rule,
We can similarly prove
\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:8}] Proposition 9. Improper integral of over exists for any and
\begin{proof}
\end{proof}