Solve for
2x1+4x2+6x34x1+5x2+6x33x1+x2−2x3=18=24=4
Normally, we use algebra:
2(1)−(2)⟹3x2+6x3=12⟹x2+2x3=423(1)−(3)⟹5x2+11x3=23⟹x3=3,x2=−2,x1=4
But we can also use matrices. The original equation is
24345166−218244
And solving
R1→R1+3R3,R2→R2+3R3R2→R2−R1R2→7R2−R1R3→R2−3R3R1→R1−311R2⟹1113378100−230364⟹112371100−23064⟹113170000−23012−2⟹1130700006301218⟹030700006−141218⟹1000100014−23
Using the augmented matrix to row echelon form method, we get the same answer.
Cramer’s Rule §
Theorem §
Let A be an invertible n×n matrix. For any b in Rn, the unique solution x of Ax=b has entries given by
xi=detAdetAi(b)
Proof §
Practice §
Solve the system of linear equations using Cramer’s Rule.
⎩⎨⎧2x1+3x2−x3=5−x1+2x2+3x3=04x1−x2+x3=−1
AdetAAx1detAx1x1Ax2detAx2x2Ax3detAx3x3=2−1432−1−131=56=50−132−1−131=14=41=2−1450−1−131=70=45=2−1432−150−1=−42=−43