[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:"",“label”:"",“_index”:0}] Definition 1. A sequence of real numbers is a set

of real numbers indexed by the natural numbers. Usually, we write or .

Examples

: we can see that as , We can say that is converging to the limit .

. This just oscillates and doesn’t converge.

Now, if , this also converges to the limit .

Convergence

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Convergence”,“label”:“convergence”,“_index”:1}] Definition 2 (Convergence). A sequence converges to the limit iff for every . We write .

Examples

Show that .

\begin{proof} Fix and choose .

Then, , we have

\end{proof}

[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:2}] Lemma 3. If and are sequences with and , then a. \begin{proof}\Since , . If Since , . If we let , then , . \end{proof} b. for c. d. .

Monotone Sequence

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Monotonically Increasing Sequence”,“label”:“monotonically-increasing-sequence”,“_index”:3}] Definition 4 (Monotonically Increasing Sequence). A sequence is monotone increasing, written , if and is monotone decreasing, written if . In either case, is monotone

[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Monotone Sequence Convergence”,“label”:“monotone-sequence-convergence”,“_index”:4}] Theorem 5 (Monotone Sequence Convergence). Every bounded monotone sequence is convergent. \begin{proof} By the ^e56e85 , has a supremum . Then, for any , is not an uppre bound, so . But is monotone increasing, so . \end{proof}

The Squeeze Principle

If , , and are sequences such that

then .

\begin{proof} Choose \end{proof}