[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:"",“label”:"",“_index”:0}] Definition 1. A sequence of real numbers is a set
of real numbers indexed by the natural numbers. Usually, we write or .
Examples
: we can see that as , We can say that is converging to the limit .
. This just oscillates and doesn’t converge.
Now, if , this also converges to the limit .
Convergence
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Convergence”,“label”:“convergence”,“_index”:1}] Definition 2 (Convergence). A sequence converges to the limit iff for every . We write .
Examples
Show that .
\begin{proof}
Fix and choose .
Then, , we have
\end{proof}
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:2}] Lemma 3. If and are sequences with and , then a.
\begin{proof}\Since , . If Since , . If we let , then , .\end{proof}b. for c. d. .
Monotone Sequence
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Monotonically Increasing Sequence”,“label”:“monotonically-increasing-sequence”,“_index”:3}] Definition 4 (Monotonically Increasing Sequence). A sequence is monotone increasing, written , if and is monotone decreasing, written if . In either case, is monotone
[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Monotone Sequence Convergence”,“label”:“monotone-sequence-convergence”,“_index”:4}] Theorem 5 (Monotone Sequence Convergence). Every bounded monotone sequence is convergent.
\begin{proof}By the ^e56e85 , has a supremum . Then, for any , is not an uppre bound, so . But is monotone increasing, so .\end{proof}
The Squeeze Principle
If , , and are sequences such that
then .
\begin{proof}
Choose
\end{proof}