Changing Variables in Integrals §
∫abf(x)dxx=g(u)⟹dx=g′(u)du∫f(g(u))g′(u)du
Definition of Jacobian: §
∬f(x,y)dxdy
If x=g(u,v) and y=h(u,v) then the Jacobian of x,y with respect to u,v is
J=∂(u,v)∂(x,y)=(∂u∂x∂u∂y∂v∂y∂v∂y)
∬f(x,y)dA→∬f(g(u,v),h(u,v))∣J∣dudv
x=rcosθ,y=rsinθJ=(∂r∂x∂r∂y∂θ∂x∂θ∂y)=(cosθsinθ−sinθcosθ)
Basically converting Triple Integral for Volume with Cartesian Coordinates with Triple Integral with Cylindrical and Spherical Coordinates!
Examples §
Example 1 §
Find the Jacobian and use teh transformation to evaluate ∬Rx2−y2dxdy where R is the region bounded by y=−x+2,y=x−4,y=x+4,y=−x+4 given u=x+y,v=x−y
Change region: §
y=−x+2⟹x+y=2⟹u=2y=−x−4⟹x+y=4⟹u=−4y=x−4⟹x−y=4⟹v=4y=x+4⟹x−y=−4⟹v=−4f(x,y)=x2−y2⟹f(u,v)=uvu=x+y,v=x−y⟹x=2u+v,y=2u−vJ=(212121−21)⟹∣J∣=21
Area: §
A=∫u=−4u=2∫v=−4v=4u⋅v⋅21dvdu
Example 2 §
FInd ∬1−4x2−9y2dA wehre R is the region bounded by 4x2+9y2=1
Change Region §
u=2x,v=3y⟹u2+v2=1
Jacobian §
J=(2003)⟹∣J∣=6
Volume §
∫θ=0θ=2π∫r=0r=11−r26⋅rdrdθ