- magnitudes in directions
- ordered tuples
- point in space
Operations
Addition
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Addition”,“label”:“addition”,“_index”:0}] Definition 1 (Addition).
For
\vec{v}=\begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix}, \vec{w}=\begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} ,$$\vec{v}+\vec{w}=\begin{pmatrix} x_{1}+x_{2} \ y_{1}+y_{2} \end{pmatrix} .$$
Intuition: joining two arrows from tail to head
Scalar Multiplication
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Scalar Multiplication”,“label”:“scalar-multiplication”,“_index”:1}] Definition 2 (Scalar Multiplication).
\alpha\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix} .$$
Intuition: scaling arrow in direction by .
Binary Operation
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“BInary Operation”,“label”:“binary-operation”,“_index”:2}] Definition 3 (BInary Operation). For set , binary operation : Examples: on , on
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Commutative”,“label”:“commutative”,“_index”:3}] Definition 4 (Commutative). is commutative if for . Ex: are commutative, is not.
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Associative”,“label”:“associative”,“_index”:4}] Definition 5 (Associative). for all Example: are all associative.
Identity Element
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Identity Element”,“label”:“identity-element”,“_index”:5}] Definition 6 (Identity Element). is identity element for if
for all . Examples: is identity element of
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Unique Identity”,“label”:“unique-identity”,“_index”:6}] Proposition 7 (Unique Identity). Identity elements are unique.
\begin{proof}Suppose are both identities. Then,
\end{proof}
Inverses
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Inverse”,“label”:“inverse”,“_index”:7}] Definition 8 (Inverse). For with identity , then is inverse to if .
Inverses for Composition
- to solve , need is injective
- then set for all , if
- to solve , need is surjective