• a vector space over a field is a set of of vectors where
  • and satisfies the below axioms

Addition

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Commutativity”,“label”:“commutativity”,“_index”:0}] Axiom 1 (Commutativity). .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Associativty”,“label”:“associativty”,“_index”:1}] Axiom 2 (Associativty). .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Zero Vector”,“label”:“zero-vector”,“_index”:2}] Axiom 3 (Zero Vector). Exists a vector s.t. .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Additive Inverse”,“label”:“additive-inverse”,“_index”:3}] Axiom 4 (Additive Inverse). , s.t. . .

Multiplication

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Multiplicative Identity”,“label”:“multiplicative-identity”,“_index”:4}] Axiom 5 (Multiplicative Identity). s.t. .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Multiplicative Associativity”,“label”:“multiplicative-associativity”,“_index”:5}] Axiom 6 (Multiplicative Associativity). For scalars , .

Distribution

  • connects addition and multiplication

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“First Distribution”,“label”:“first-distribution”,“_index”:6}] Axiom 7 (First Distribution). .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Second Distribution”,“label”:“second-distribution”,“_index”:7}] Axiom 8 (Second Distribution). .

Examples

  • vector spaces over
    • where
    • For field ,
      • vector space

Subspace

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Vector Subspace”,“label”:“vector-subspace”,“_index”:8}] Definition 9 (Vector Subspace). If is a vector subspace then a subspace of is a subset s.t. is also a vector space using the same operations.

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Closure under Operation”,“label”:“closure-under-operation”,“_index”:9}] Definition 10 (Closure under Operation). A subset is closed under if given then .

[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:10}] Proposition 11. Nonempty is subspace is closed under addition and scalar multiplication

Axioms

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:11}] Axiom 12. always.

\begin{proof}For any , .\end{proof}

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:12}] Axiom 13. Additive Inverse always

\begin{proof}For any , . \end{proof}

Subspaces of

  • if is subspace, then
  • for
  • is subspace (check for closure)
    • is actually just a line through if visualized on plane

[!math|{“type”:“claim”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:13}] Claim 14. If is a subspace, it’s either , or line through .

\begin{proof}Given , assume it’s not \end{proof}

[!math|{“type”:“claim”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:14}] Claim 15. Given any , can write for unique