- a vector space over a field is a set of of vectors where
- and satisfies the below axioms
Addition
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Commutativity”,“label”:“commutativity”,“_index”:0}] Axiom 1 (Commutativity). .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Associativty”,“label”:“associativty”,“_index”:1}] Axiom 2 (Associativty). .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Zero Vector”,“label”:“zero-vector”,“_index”:2}] Axiom 3 (Zero Vector). Exists a vector s.t. .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Additive Inverse”,“label”:“additive-inverse”,“_index”:3}] Axiom 4 (Additive Inverse). , s.t. . .
Multiplication
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Multiplicative Identity”,“label”:“multiplicative-identity”,“_index”:4}] Axiom 5 (Multiplicative Identity). s.t. .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Multiplicative Associativity”,“label”:“multiplicative-associativity”,“_index”:5}] Axiom 6 (Multiplicative Associativity). For scalars , .
Distribution
- connects addition and multiplication
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“First Distribution”,“label”:“first-distribution”,“_index”:6}] Axiom 7 (First Distribution). .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Second Distribution”,“label”:“second-distribution”,“_index”:7}] Axiom 8 (Second Distribution). .
Examples
- vector spaces over
- where
- For field ,
- vector space
Subspace
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Vector Subspace”,“label”:“vector-subspace”,“_index”:8}] Definition 9 (Vector Subspace). If is a vector subspace then a subspace of is a subset s.t. is also a vector space using the same operations.
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Closure under Operation”,“label”:“closure-under-operation”,“_index”:9}] Definition 10 (Closure under Operation). A subset is closed under if given then .
- vector spaces are also closed under addition and scalar multiplication, but didn’t have to define since addition and multiplication are binary operations and closing by default
- notice that
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:10}] Proposition 11. Nonempty is subspace is closed under addition and scalar multiplication
Axioms
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:11}] Axiom 12. always.
\begin{proof}For any , .\end{proof}
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:12}] Axiom 13. Additive Inverse always
\begin{proof}For any , . \end{proof}
Subspaces of
- if is subspace, then
- for
- is subspace (check for closure)
- is actually just a line through if visualized on plane
[!math|{“type”:“claim”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:13}] Claim 14. If is a subspace, it’s either , or line through .
\begin{proof}Given , assume it’s not
\end{proof}
[!math|{“type”:“claim”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:14}] Claim 15. Given any , can write for unique