Mass of a straight wire :
∫ f ( x ) d x
Mass of a curvy wire :
∫ f ( x , y ) d S
Mass of planar lamina :
∬ f ( x , y ) d A
Surface Integral :
∬ f ( x , y , z ) d S
Evaluating a Surface Integral §
Let S be a surface given by z = g ( x , y ) and let R be it sprojection onto the xy-plane. If g , g x , g y are continuous on R and f is continuous on S , then the surface integral of f over S is
∬ S f ( x , y , z ) d S = ∬ R f ( x , y , g ( x , y )) 1 + [ g x ( x , y ) ] 2 + [ g y ( x , y ) ] 2 d A
Relationship holds true for y = g ( x , z ) and x = g ( y , z ) , just substitute variables as needed.
Applications §
mass of shell
moment of inertia
center of mass
pressure and gravitation
electrical charge
Gauss’s Law
Examples §
Example 1 §
Evaluate the surface integral ∬ S f ( x , y , z ) d S where S is the parabolic cylinder y = 3 x 2 , 0 ≤ x ≤ 4 , 0 ≤ z ≤ 4
Solution §
Surface is in xz-plane.
y = g ( x , z ) = 3 x 2
∬ f ( x , y , z ) d S = ∬ f ( x , y , z ) ⋅ 1 + g x 2 + g z 2 d S = ∫ x = 0 x = 4 ∫ z = 0 z = 4 3 x ⋅ 1 + ( 6 x ) 2 + 0 d z d x = 1539.89
Example 2 §
Evaluate ∬ S ( x − 2 y + z ) d S where S : z = 2 , x 2 + y 2 ≤ 1
Solution §
z = 2
∬ S f ( x , y , z ) d S = ∬ f ( x , y , z ) ⋅ 1 + g x 2 + g y 2 = ∫ x = − 1 x = − 1 ∫ y = − 1 − x 2 y = 1 − x 2 ( x − 2 y + 2 ) ⋅ 1 + 0 + 0 d y d x
OR
∬ S f ( x , y , z ) d S = ∬ f ( x , y , z ) ⋅ 1 + g x 2 + g y 2 = ∫ θ = 0 θ = 2 π ∫ r = 0 r = 1 ( r cos θ − 2 r sin θ + 2 ) r d r d θ = 2 π
Example 3 §
Evaluate ∬ f ( x , y , z ) d S where f ( x , y , z ) = z x y , S : z = x 2 + y 2 , 4 ≤ x 2 + y 2 ≤ 16 in Quadrant 1
Solution §
∬ f ( x , y , z ) ⋅ 1 + g x 2 + g y 2 d S = ∫ 0 2 π ∫ r = 2 r = 4 r cos θ + sin θ 1 + 4 x 2 + 4 y 2 d r d θ = ∫ 0 2 π ∫ 2 4 sin θ cos θ 1 + 4 r 2 d r d θ = 18.91
Parameter Surface Integral §
Parametric Equation §
x = x ( u , v ) y = y ( u , v ) z = z ( u , v ) r ( u , v ) =< x ( u , v ) , y ( u , v ) , z ( u , v ) >
Surface Integral w/ Parametric Surface §
If S is a surface given as r ( u , v ) =< x ( u , v ) , y ( u , v ) , z ( u , v ) over region D in the uv plane, then the surface integral of f ( x , y , z ) over S is
∬ S f ( x , y , z ) d S = ∬ D f ( x ( u , v ) , y ( u , v ) , z ( u , v )) ∣ r u × r v ∣ d A
Examples §
Example 4 §
Use parametric surface to evaluate
∬ S f ( x , y , z ) d S , S : y = 3 x 2 , 0 ≤ x ≤ 4 , 0 ≤ z ≤ 4 , f ( x , y , z ) = 3 x
Solution §
x y z r ( u , v ) = u = 3 u 2 = v =< u , 3 u 2 , v >
0 ≤ u ≤ 4 0 ≤ v ≤ 4
∫ u = 0 u = 4 ∫ v = 0 v = 4 3 u ∣∣ < 1 , 6 u , 0 > × < 0 , 0 , 1 > ∣∣ d v d u = ∫ 0 4 ∫ 0 4 3 u 1 + 36 u 2 d u d v = 1539.89
Example 5 §
Find ∬ S ( y = 5 ) d S where r ( u , v ) =< u , v , 2 v > , 0 ≤ u ≤ 1 , 0 ≤ v ≤ u
Solution §
∫ u = 0 u = ∫ v = 0 v = u ( v + 5 ) 5 d v d u = 3 8 5