[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“exp”,“label”:“exp”,“_index”:0}] Definition 1 (exp). The inverse function of from is .
Properties
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:1}] Proposition 2.
\begin{proof}. \end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:2}] Proposition 3.
\begin{proof}Since , using the formula for the derivative of an inverse,
\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:3}] Proposition 4. For ,
\begin{proof} For , exists unique s.t. .
\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:4}] Proposition 5. is strictly increasing.
\begin{proof}If , let . is strictly increasing, so , and thus .
\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:5}] Proposition 6. ,
\begin{proof} For the first limit, we must show when , or equivalently , which is possible since we choose . Similarly, for the second limit, we must show or .\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:6}] Proposition 7.
\begin{proof}Since is differentiable, it is continuous. Thus, it is integrable on finite subintervals. We also know .\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:7}] Proposition 8. and for polynomials .
\begin{proof}Start with . We know that since the of the previous term is .
For , check , which is true since .
\end{proof}
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:8}] Proposition 9.
\begin{proof}We need to show
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:9}] Lemma 10. If is differentiable on and , then s.t. and if , .
We can prove this lemma is true by differentiating using quotient rule to find that is constant, say .
\end{proof}
e
The number is defined as .
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:10}] Proposition 11. .
\begin{proof}Apply to get .
Now, we will prove this is true for in that order.
We know
and
Then,
Then, for , take , so
\end{proof}
Now, for every , this is monotone so it has an inverse, all it . It is easy to see that
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:11}] Proposition 12. .
Hyperbolic Functions
is key to the hyperbolic trig functions:
Cool Properties
- like Pythagorean theorem but with diff sign
- model hyperbolas