Definition of Divergence §
divF=∇F=<∂x∂,∂y∂>⋅<P,Q>=∂x∂P+∂y∂Q
If divF=0, F is divergence free.
In fluid motion, divergence free vector fields are “incompressible.”
In E&M, divergence free vector field is called “solenoidal.”
Definition of Curl §
FcurlF=<P,Q,R>=∇F=∂x∂P∂y∂Q∂z∂R
Example 1 §
F=exi^+yzj^−yz2k^
a. Find divergence of F at (0, 2, -1)
divFdivF(0,2,−1)=∂x∂[ex]+∂y∂yz+∂z∂[−yz2]=e0−1−2(2)(−1)=4=4
b. Find the curl of F
curlF=i^∂x∂exj^∂y∂yzk^∂z∂−yz2=(−z2−y)i^=0
Example 2 §
Find potential function of F=<ezy,ezx,ez>
curlF=i^∂x∂ezyj^∂y∂ezxk^∂z∂ez=<−ezx,ezy,0>=0
F is not conservative.
Example 3 §
Find the potential function of F(x,y,z)=<y1,−y2x,i
f(x,y,z)=∫y1dx=yx+g(y,z)=∫y2−xdy=yx+h(x,z)=∫2zd