Series are the sum of Sequences, where we take a sequence and add up all of its terms.
Convergence
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Series”,“label”:“series”,“_index”:0}] Definition 1 (Series). A series converges if the sequence of partial sums converges. We then set .
Examples
Show that
\begin{proof}
Let
Then,
Subtracting the second equation from the first, we get
Now, by the definition of convergence, we just need to make sure that converges. Plugging in, we get
Therefore,
converges.
\end{proof}
Sum of Two Converging Series
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Sum of 2 Converging Series”,“label”:“sum-of—converging-series”,“_index”:1}] Lemma 2 (Sum of 2 Converging Series). If and converge, then converges for .
Divergence of Harmonic Series
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Harmonic Series”,“label”:“harmonic-series”,“_index”:2}] Lemma 3 (Harmonic Series). diverges.
\begin{proof}
Observe that
Therefore,
Thus, the set of partial sums diverges.
\end{proof}
Telescoping Series
Similarly, diverges. However, their difference converges. This is because of telescoping series.
Necessary Limit Condition
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Limit of Converging Series Term”,“label”:“limit-of-converging-series-term”,“_index”:3}] Lemma 4 (Limit of Converging Series Term). If converges, then .
\begin{proof}
\end{proof}
Comparison Test
If converges and for , then converges.
\begin{proof}This is obvious when comparing partial sums (both are bounded). \end{proof}
Limit Comparison Test
If and , then converges iff converges.
\begin{proof} such that for for . Then, we can apply Comparison Test.
\end{proof}
Root Test
If for in and , then
- If , the series converges ()
- If , the series diverges ()
- If , inconclusive ()
\begin{proof} If , choose such that . Then, for . Then, for and .
If , then .
\end{proof}
Ratio Test
Suppose
- If the limit , the series converges
- If , the series diverges
- If , inconclusive
\begin{proof} If , let . Then, there exists such that for all . This implies for all . Thus, for some , and converges by the Comparison Test.
If , then for all , which clearly doesn’t converge.
\end{proof}
Absolute Convergence
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Absolute Convergence”,“label”:“absolute-convergence”,“_index”:4}] Definition 5 (Absolute Convergence). is absolutely convergent if converges. If converges and diverges, then is conditionally convergent.
Absolute convergence is useful because
Absolute Convergence Test
[!math|{“type”:“lemma”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:5}] Lemma 6. If is absolutely convergent, it is convergent.
\begin{proof} Let . Then or , so . By Comparison Test, converges, so also converges.
\end{proof}
To find conditional convergence, we use
Alternating Series Test
If is monotonically decreasing and , then converges.
\begin{proof} The partial sums are monotonic increasing since
\begin{align} \lim_{ n \to \infty } S_{2n} - \lim_{ n \to \infty } S_{2n-1} &= \lim_{ n \to \infty } S_{2n}-S_{2n-1} \ &= \lim_{ n \to \infty } -a_{2n} \ &= 0 \end{align}
Thus, $\sum_{}^{}a_{n}$ converges. `\end{proof}` ## Integral Test For $S=\sum_{n=1}^{\infty}a_{n}$ w/ $a_{n}=f(n)$ for $f>0$, monotone and decreasing on $[1,\infty]$, then $S$ converges iff $I=\int_{1}^{\infty} f(x) \, dx$ converges. `\begin{proof}`Partition $[1,N]$ into $1<2<3<\dots<N$ so\begin{align} U(f,P_{N})&=a_{1}+a_{2}+\dots+a_{N-1}\ L(f,P_{N})&=a_{2} + \dots + a_{N} .\end{align}
L(f,P_{N})<\int_{1}^{N} f , dx < \int_{1}^{\infty} f(x) , d\mathbf{x}.
Let $N\to \infty$, so $S-a_{1}<\int_{1}^{\infty} f(x) \, dx$. For the converse, notice\int_{1}^{N} f(x) , dx =\sum_{j=1}^{j=N-1}\int_{j}^{j+1} f(x) , dx.
Let the $b_{j}=\int_{j}^{j+1} f(x) \, dx$. Clearly, $a_{n+1}<b_{n}\leq a_{n}$, so by [[#comparison-test|Comparison Test]], $S-a_{1}\leq\int_{1}^{\infty} f(x) \, dx\leq S$. `\end{proof}` # Power Series > [!math|{"type":"definition","number":"auto","setAsNoteMathLink":false,"title":"Power Series","label":"power-series","_index":6}] Definition 7 (Power Series). > A power series is an infinite series of the form > $$ > \sum_{n=0}^{\infty}a_{n}(z-a)^{n}=a_{0}+a_{1}(z-a)+a_{2}(z-a)^{2}+\dots > $$ ## Convergence > [!math|{"type":"lemma","number":"auto","setAsNoteMathLink":false,"_index":7}] Lemma 8. > If the power series $\sum_{}^{}a_{n}z^{n}$ converges for a particular $z=z_{1}\neq 0$, then it converges absolutely for all $z:|z|<|z_{1}|$. ^d5c99e `\begin{proof}` Since $\sum_{}^{}a_{n}z_{1}^{n}$ converges, $a_{n}z_{1}^{n}\to0$ as $n\to \infty$. Therefore, there is $N \in \mathbb{N}$ s.t. $|a_{n}z_{1}^{n}|<1$ for all $n\geq N$. If $|z|<|z_{1}|$, then|a_{n}z^{n}|=|a_{n}z_{1}^{n}| |\frac{z}{z_{1}}|^{n}< |\frac{z}{z_{1}}|^{n}
for all $n\geq N$. Since $\sum_{}^{}|\frac{z}{z_{1}}|^{n}<\infty$, $\sum_{}^{}a_{n}z^{n}$ converges by comparison. `\end{proof}` ## Radius of Convergence > [!math|{"type":"axiom","number":"auto","setAsNoteMathLink":false,"title":"Radius of Convergence","label":"radius-of-convergence","_index":8}] Axiom 9 (Radius of Convergence). > If the $\sum_{}^{}a_{n}z^{n}$ converges for at least one $z=z_{1}\neq 0$ and diverges for $z=z_{2}\neq 0$, there exists a positive real number $R$ called the radius of convergence s.t. the series converges absolutely if $|z|<R$ and diverges if $|z|>R$. `\begin{proof}` Let $A$ be the set of $|z|$ for which $\sum_{}^{}a_{n}z^{n}$ converges. Then $A\neq \emptyset$ and the set is bounded by $|z_{2}|$. Therefore, $R=\text{sup} A$ exists. Then, $\sum_{}^{}a_{n}z^{n}$ diverges for all $|z|>R$. If $|z|<R$, then $\exists x$ with $|z|<x<R$ s.t. the series converges. So by [[#^d5c99e|^d5c99e]], $a_{n}z^{n}$ also converges. `\end{proof}` We find the radius of convergence by using the [[Series#ratio-test|Ratio Test]].