Span

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Linear Combination”,“label”:“linear-combination”,“_index”:0}] Definition 1 (Linear Combination). A vector of the form

where some vector space over and .

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Span”,“label”:“span”,“_index”:1}] Definition 2 (Span). For -vector space , , (set of all linear combinations). spans (or generates ) if aka .

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Finite Dimensional”,“label”:“finite-dimensional”,“_index”:2}] Definition 3 (Finite Dimensional). A vector space is finite dimensional if finite set of vectors spans it.

  • example: is finite dimensional
  • for if are not on the same line through .
  • this property of is called

Linear Independence

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Linear Independence”,“label”:“linear-independence”,“_index”:3}] Definition 4 (Linear Independence). Given a set , is linearly independent if given with and distinct, then .

[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:4}] Theorem 5. If is linearly independent then is linearly independent.

  • opposite would be

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Linear Dependence”,“label”:“linear-dependence”,“_index”:5}] Definition 6 (Linear Dependence). is linearly dependent if for , , w/ some .

Bases

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Basis”,“label”:“basis”,“_index”:6}] Definition 7 (Basis). Basis of () is a list of vectors that is linearly independent and spans .

[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Basis”,“label”:“basis”,“_index”:7}] Proposition 8 (Basis). is a basis every vector can be expressed uniquely as .

\begin{proof} : definition of span : for and , \end{proof}

[!math|{“type”:“example”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Standard Basis”,“label”:“standard-basis”,“_index”:8}] Example 9 (Standard Basis). has a standard basis :

  • example: a polynomial of degree has standard basis

Dimension

[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Dimension”,“label”:“dimension”,“_index”:9}] Definition 10 (Dimension). If is basis , dimension of , or is

[!math|{“type”:“claim”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:10}] Claim 11. is well defined: any two bases of a finite dimensional vector space have same length.

\begin{proof}Suppose are bases. Then, if is linearly independent and i s spanning,

Since we can flip around WLOG,

Thus, . \end{proof}

Connection to Sets

  • finite set finite dimensional