Span
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Linear Combination”,“label”:“linear-combination”,“_index”:0}] Definition 1 (Linear Combination). A vector of the form
where some vector space over and .
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Span”,“label”:“span”,“_index”:1}] Definition 2 (Span). For -vector space , , (set of all linear combinations). spans (or generates ) if aka .
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Finite Dimensional”,“label”:“finite-dimensional”,“_index”:2}] Definition 3 (Finite Dimensional). A vector space is finite dimensional if finite set of vectors spans it.
- example: is finite dimensional
- for if are not on the same line through .
- this property of is called
Linear Independence
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Linear Independence”,“label”:“linear-independence”,“_index”:3}] Definition 4 (Linear Independence). Given a set , is linearly independent if given with and distinct, then .
[!math|{“type”:“theorem”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:4}] Theorem 5. If is linearly independent then is linearly independent.
- opposite would be
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Linear Dependence”,“label”:“linear-dependence”,“_index”:5}] Definition 6 (Linear Dependence). is linearly dependent if for , , w/ some .
Bases
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Basis”,“label”:“basis”,“_index”:6}] Definition 7 (Basis). Basis of () is a list of vectors that is linearly independent and spans .
[!math|{“type”:“proposition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Basis”,“label”:“basis”,“_index”:7}] Proposition 8 (Basis). is a basis every vector can be expressed uniquely as .
\begin{proof}
: definition of span
: for and ,
\end{proof}
[!math|{“type”:“example”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Standard Basis”,“label”:“standard-basis”,“_index”:8}] Example 9 (Standard Basis). has a standard basis : …
- example: a polynomial of degree has standard basis
Dimension
[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Dimension”,“label”:“dimension”,“_index”:9}] Definition 10 (Dimension). If is basis , dimension of , or is
[!math|{“type”:“claim”,“number”:“auto”,“setAsNoteMathLink”:false,“_index”:10}] Claim 11. is well defined: any two bases of a finite dimensional vector space have same length.
\begin{proof}Suppose are bases. Then, if is linearly independent and i s spanning,
Since we can flip around WLOG,
Thus, .
\end{proof}
Connection to Sets
- finite set finite dimensional