Cylindrical Volume §
∫θ1θ2∫r1r2∫z1z2f(rcosθ,rsinθ,z)dzdrdθ
Example 1 §
Find ∫∫∫ydV where Q bounded by z=4−x2−y2 in the first octant x=0,y=0,z=0
0≤z≤4−r20≤r≤20≤θ≤2π∫0π∫02∫04−r2rsin(θ)rdzdrdθ=∫0π∫02∫04−r2r2sin(θ)dzdrdθ=4.27
Example 2 §
Set up ∫∫xydV using cylindrical cordinates where Q:x,y,z∣x2+y2≤1,x≥1,y≤x,−1≤z≤1
∫−2π4π∫01∫−11r3sinθcosθdzdrdθ
Triple Integral Using Spherical Coordinates §
Coordinates: (ρ,θ,ϕ)
r=ρsinϕx=rcosθ=ρsinϕcosθy=rsinθ=ρsinϕsinθz=ρcosϕ
Volume:
∭f(ρ,θ,ϕ)ρ2sinϕdρdϕdθ
Example 1 §
Find ∭x2+y2+z2dV, bounded by x2+y2+z2≤1
ρ=x2+y2+z2⟹ρ≤10≤ϕ≤π0≤θ≤2π
V=∫02π∫ϕ=0ϕ=π∫ρ=0ρ=1ρ⋅ρ2sinϕdϕdϕdθ=∫02π∫ϕ=0ϕ=π∫ρ=0ρ=1ρ3sinϕdρdϕdθ=∫02π∫ϕ=0ϕ=π41sinϕdϕdθ=∫02π21dθ=π
Example 2 §
Use spherical and cylindrical to find the volume of the solid region Q bounded by upper napped of the cone z2=x2+y2 above by the sphere x2+y2+z2=9
Spherical §
ρ2=9⟹ρ=3x2=z2−y2,x2=9−(y2+z2)⟹2z2=9⟹z=23ρcosϕ=23→ϕ=4π
Bounds:
0≤ρ≤30≤ϕ≤4π0≤θ≤2π
V=∫θ=0θ=2π∫ϕ=0ϕ=π/4∫ρ=0ρ=31⋅ρ2sinϕdρdϕdθ=∫θ=0θ=2π∫ϕ=0ϕ=π/49sinϕdϕdθ=∫θ=0θ=2π(−292+9)dθ=18π−92π
Cylindrical §
Bounds §
z=x2+y2⟹r≤zz=9−x2−y2⟹z≤0−r22r2=9⟹r=23
Volume §
V=∫θ=0θ=2π∫r=0r=3/2∫r9−r21⋅rdzdrdθ=18π−92π
Example 3 §
Find the volume of the region outside the cylinder x2+y2=1 and inside the sphere x2+y2+z2=4.
Bounds §
r2=1,ρ2=4⟹sinϕ1≤ρ≤2r2=1,r2+(ρcosϕ)2=4⟹ϕ=6π,65π0≤θ≤65π
Volume §
V=∫θ=0θ=2π∫ϕ=π/6ϕ=5π/6∫ρ=cscθρ=21⋅ρ2sinϕdρdϕdθ=∫θ=0θ=2π∫ϕ=π/6ϕ=5π/638−csc3θdϕdθ
Bounds are Bad? §
Then change them! Changing Bounds for Integrals with the Jacobian