[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Field”,“label”:“field”,“_index”:0}] Definition 1 (Field). A field is a set together with 2 binary operations(addition and multiplication) that satisfy the below axioms.

  1. Associativity
  2. Commutativity
  3. Additive Inverses
  4. Additive Identity
  5. Multiplicative Identity

Axioms

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Associativity”,“label”:“associativity”,“_index”:1}] Axiom 2 (Associativity). and for

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Commutativity”,“label”:“commutativity”,“_index”:2}] Axiom 3 (Commutativity). and .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Identities”,“label”:“identities”,“_index”:3}] Axiom 4 (Identities). two distinct elements s.t. and for .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Inverses”,“label”:“inverses”,“_index”:4}] Axiom 5 (Inverses). For ,

  1. s.t. and
  2. s.t. .

[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Distributivitiy”,“label”:“distributivitiy”,“_index”:5}] Axiom 6 (Distributivitiy). .

Examples

  • Fields: , ,
  • Non-fields: with addition and multiplication

Binary Field

  • unique field structure on the set
  • example of a finite field
  • suffices to determine addition and multiplication tables
  • addition table:
01
001
110
  • must equal since which violates ^18bb35
  • multiplication table:
01
000
101