[!math|{“type”:“definition”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Field”,“label”:“field”,“_index”:0}] Definition 1 (Field). A field is a set together with 2 binary operations(addition and multiplication) that satisfy the below axioms.
- Associativity
- Commutativity
- Additive Inverses
- Additive Identity
- Multiplicative Identity
Axioms
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Associativity”,“label”:“associativity”,“_index”:1}] Axiom 2 (Associativity). and for
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Commutativity”,“label”:“commutativity”,“_index”:2}] Axiom 3 (Commutativity). and .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Identities”,“label”:“identities”,“_index”:3}] Axiom 4 (Identities). two distinct elements s.t. and for .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Inverses”,“label”:“inverses”,“_index”:4}] Axiom 5 (Inverses). For ,
- s.t. and
- s.t. .
[!math|{“type”:“axiom”,“number”:“auto”,“setAsNoteMathLink”:false,“title”:“Distributivitiy”,“label”:“distributivitiy”,“_index”:5}] Axiom 6 (Distributivitiy). .
Examples
- Fields: , ,
- Non-fields: with addition and multiplication
Binary Field
- unique field structure on the set
- example of a finite field
- suffices to determine addition and multiplication tables
- addition table:
| 0 | 1 | |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 0 |
- must equal since which violates ^18bb35
- multiplication table:
| 0 | 1 | |
|---|---|---|
| 0 | 0 | 0 |
| 1 | 0 | 1 |